

Assessing the effects of freshwater inflows and other key drivers on the population dynamics of blue crab and white shrimp using a multivariate time-series modeling framework: Phase 2

Dr. Lindsay P. Scheef

Dr. Edward J. Buskey

Mission-Aransas National Estuarine Research Reserve

Phase 1 summary

- Data from the Texas Parks and Wildlife Department (TPWD) Coastal Fisheries monitoring program, U.S. Geological Survey (USGS) flow gage stations, and several other sources were acquired for 1982– 2013
- Drivers of blue crab and white shrimp population dynamics were assessed using multivariate autoregressive (MAR) models
- Detected significant lagged effects of predators, water temperature, salinity, and river discharge on the abundances of both focal species
- Effects of freshwater inflows on focal species abundances must be assessed in conjunction with other drivers at time lags of up to two years

Phase 2 Tasks

- Update datasets and rerun original models
- Reformat datasets to reflect TCEQ inflow standard seasonal increments
- ✓ Run new sets of MAR models using reformatted data
- Assess whether particular seasons are more influential on focal species abundances
- ✓ Model adaptation for inflow scenario assessment
- Prepare & submit final report
- Submit data and annotated R code

Seasonal divisions:

Winter (Jan-Mar)

Spring (Apr-Jun)

Summer (Jul-Sep)

Fall (Oct-Dec)

Seasonal divisions:

Winter (Jan-Mar)

Spring (Apr-Jun)

Summer (Jul-Sep)

Fall (Oct-Dec)

$$\frac{\text{Sp1}}{\text{estimate}} = \frac{\text{Sp1}_{t-1}}{\times 0.56} + \frac{\text{Intercept}}{13.5} + \frac{\text{Env1}}{\times 2.4} + \frac{\text{Env2}}{\times -3.5}$$

$$\frac{\text{Sp1}}{\text{estimate}} = \frac{\text{Sp1}_{t-1}}{\times 0.56} + \frac{\text{Intercept}}{13.5} + \frac{\text{Env1}}{\times 2.4} + \frac{\text{Env2}}{\times -3.5}$$

Example: no auto-regression

$$\begin{array}{c}
\text{Sp1} \\
\text{estimate}
\end{array} = \\
\text{Intercept} \\
90.6 + \text{Env1} \\
\times 2.9 + \text{Env2} \\
\times -8.2$$

$$\frac{\text{Sp1}}{\text{estimate}} = \frac{\text{Sp1}_{t-1}}{\text{x 0.56}} + \frac{\text{Intercept}}{13.5} + \frac{\text{Env1}}{\text{x 2.4}} + \frac{\text{Env2}}{\text{x -3.5}}$$

Example: no auto-regression

$$\begin{array}{c}
\text{Sp1} \\
\text{estimate}
\end{array} = \\
\text{Intercept} \\
90.6 + \text{Env1} \\
\times 2.9 + \text{Env2} \\
\times -8.2$$

$$\frac{\text{Sp1}}{\text{estimate}} = \frac{\text{Sp1}_{t-1}}{\text{x 0.56}} + \frac{\text{Intercept}}{13.5} + \frac{\text{Env1}}{\text{x 2.4}} + \frac{\text{Env2}}{\text{x -3.5}}$$

Example: no auto-regression

$$\begin{array}{r}
\text{Sp1} \\
\text{estimate}
\end{array} = \\
\text{Intercept} \\
90.6 + \frac{\text{Env1}}{\text{x 2.9}} + \frac{\text{Env2}}{\text{x -8.2}}$$

$$\begin{array}{r}
\text{Sp1} \\
\text{estimate}
\end{array} = \\
\text{Sp1}_{t-1} + \frac{\text{Intercept}}{13.5} + \frac{\text{Env1}}{\text{x 2.4}} + \frac{\text{Env2}}{\text{x -3.5}}$$

$$\frac{\mathsf{Sp1}_{t+1}}{\mathsf{estimate}} \ = \ \frac{\mathsf{Intercept}}{\mathsf{0}} \ + \ \frac{\mathsf{Sp1}_{t}}{\mathsf{x} \, \mathsf{b}_{1}} \ + \ \frac{\mathsf{Sp2}_{t}}{\mathsf{x} \, \mathsf{b}_{2}} \ + \ \frac{\mathsf{Sp3}_{t}}{\mathsf{x} \, \mathsf{b}_{3}} \ + \ \frac{\mathsf{Env1}_{t}}{\mathsf{x} \, \mathsf{c}_{1}} \ + \ \frac{\mathsf{Env2}_{t}}{\mathsf{x} \, \mathsf{c}_{2}}$$

$$\frac{\mathsf{Sp1}_{t+1}}{\mathsf{estimate}} = \frac{\mathsf{Intercept}}{\mathsf{0}} + \frac{\mathsf{Sp1}_{t}}{\mathsf{x}\,\mathsf{b}_{1}} + \frac{\mathsf{Sp2}_{t}}{\mathsf{x}\,\mathsf{b}_{2}} + \frac{\mathsf{Sp3}_{t}}{\mathsf{x}\,\mathsf{b}_{3}} + \frac{\mathsf{Env1}_{t}}{\mathsf{x}\,\mathsf{c}_{1}} + \frac{\mathsf{Env2}_{t}}{\mathsf{x}\,\mathsf{c}_{2}}$$

$$\frac{\mathsf{Sp1}_{t+1}}{\mathsf{estimate}} = \frac{\mathsf{Intercept}}{\mathsf{0}} + \frac{\mathsf{Sp1}_{t}}{\mathsf{x}\,\mathsf{b}_{1}} + \frac{\mathsf{Sp2}_{t}}{\mathsf{x}\,\mathsf{b}_{2}} + \frac{\mathsf{Sp3}_{t}}{\mathsf{x}\,\mathsf{b}_{3}} + \frac{\mathsf{Env1}_{t}}{\mathsf{x}\,\mathsf{c}_{1}} + \frac{\mathsf{Env2}_{t}}{\mathsf{x}\,\mathsf{c}_{2}}$$

Env2	Env1	Sp3	Sp2	Sp1	
					Sp1

$$\frac{\mathsf{Sp1}_{t+1}}{\mathsf{estimate}} = \frac{\mathsf{Intercept}}{\mathsf{0}} + \frac{\mathsf{Sp1}_{t}}{\mathsf{x}\,\mathsf{b}_{1}} + \frac{\mathsf{Sp2}_{t}}{\mathsf{x}\,\mathsf{b}_{2}} + \frac{\mathsf{Sp3}_{t}}{\mathsf{x}\,\mathsf{b}_{3}} + \frac{\mathsf{Env1}_{t}}{\mathsf{x}\,\mathsf{c}_{1}} + \frac{\mathsf{Env2}_{t}}{\mathsf{x}\,\mathsf{c}_{2}}$$

	Sp1	Sp2	Sp3	Env1	Env2	
Sp1	$b_{1,1}$	$b_{1,2}$	$b_{1,3}$	c _{1,1}	$c_{1,2}$	

$$\frac{\mathsf{Sp1}_{t+1}}{\mathsf{estimate}} = \frac{\mathsf{Intercept}}{\mathsf{0}} + \frac{\mathsf{Sp1}_{t}}{\mathsf{x}\,\mathsf{b}_{1}} + \frac{\mathsf{Sp2}_{t}}{\mathsf{x}\,\mathsf{b}_{2}} + \frac{\mathsf{Sp3}_{t}}{\mathsf{x}\,\mathsf{b}_{3}} + \frac{\mathsf{Env1}_{t}}{\mathsf{x}\,\mathsf{c}_{1}} + \frac{\mathsf{Env2}_{t}}{\mathsf{x}\,\mathsf{c}_{2}}$$

$$\frac{\mathsf{Sp2}_{t+1}}{\mathsf{estimate}} = \frac{\mathsf{Intercept}}{\mathsf{0}} + \frac{\mathsf{Sp1}_{t}}{\mathsf{x}\,\mathsf{b}_{1}} + \frac{\mathsf{Sp2}_{t}}{\mathsf{x}\,\mathsf{b}_{2}} + \frac{\mathsf{Sp3}_{t}}{\mathsf{x}\,\mathsf{b}_{3}} + \frac{\mathsf{Env1}_{t}}{\mathsf{x}\,\mathsf{c}_{1}} + \frac{\mathsf{Env2}_{t}}{\mathsf{x}\,\mathsf{c}_{2}}$$

	Sp1	Sp2	Sp3	Env1	Env2
Sp1	b _{1,1}	<i>b</i> _{1,2}	b _{1,3}	C _{1,1}	<i>C</i> _{1,2}
Sp2	<i>b</i> _{2,1}	<i>b</i> _{2,2}	$b_{2,3}$	C _{2,1}	<i>C</i> _{2,2}

$$\begin{array}{lll} & \operatorname{Sp1}_{t+1} & = & \operatorname{Intercept} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp1}_{t} \\ \operatorname{estimate} & = & 0 & + & \operatorname{Sp2}_{t} \\ \operatorname{estimate}$$

	Sp1	Sp2	Sp3	 Env1	Env2	
Sp1	b _{1,1}	b _{1,2}	<i>b</i> _{1,3}	 C _{1,1}	C _{1,2}	
Sp2	<i>b</i> _{2,1}	<i>b</i> _{2,2}	$b_{2,3}$	 C _{2,1}	<i>C</i> _{2,2}	
Sp3	<i>b</i> _{3,1}	<i>b</i> _{3,2}	<i>b</i> _{3,3}	 C _{3,1}	c _{3,2}	

Updated vs. Original Data Models

Blue crab 2-year lag Coefficient values

Updated vs. Original Data Models

White shrimp 6-month lag Coefficient values

Blue crab: original model

6 response variables

9 predictor variables

Blue crab: original model

6 response variables

9 predictor variables

Blue crab: Model with 4 seasons included

6 × 4 = 24 response variables

9 x 4 = 36 predictor variables

Blue crab: Model with 4 seasons included

864 coefficients

6 x 4 = 24 response variables

2864 = quite a few possible model configurations

ne Est winkspringsmine Est

9 × 4 = 36 predictor variables

Blue crab: Model with 4 seasons & 2 year lags included

36 × 3 = 108 predictor variables

Blue crab: Model with 4 seasons & 2 year lags included

36 × 3 = 108 predictor variables

response

variables

- Focus on trawl datasets for focal species responses
 - Trawl samples taken throughout bays rather than only along perimeters (gill net and seine samples)
 - Trawl samples taken year-round rather than only in spring and fall (gill net samples)
 - Most consistent and ecologically plausible results in original models

- Focus on trawl datasets for focal species responses
 - Trawl samples taken throughout bays rather than only along perimeters (gill net and seine samples)
 - Trawl samples taken year-round rather than only in spring and fall (gill net samples)
 - Most consistent and ecologically plausible results in original models
- Focus on trawl datasets for focal species predictors
 - Same reasons as above

- Focus on trawl datasets for focal species responses
 - Trawl samples taken throughout bays rather than only along perimeters (gill net and seine samples)
 - Trawl samples taken year-round rather than only in spring and fall (gill net samples)
 - Most consistent and ecologically plausible results in original models
- Focus on trawl datasets for focal species predictors
 - Same reasons as above
- Remove predators as predictors
 - Gill net samples only taken in spring and fall
 - Influenced by FW inflows so would also have to be estimated
 - Removal has very little effect on model results

- Focus on trawl datasets for focal species responses
 - Trawl samples taken throughout bays rather than only along perimeters (gill net and seine samples)
 - Trawl samples taken year-round rather than only in spring and fall (gill net samples)
 - Most consistent and ecologically plausible results in original models
- Focus on trawl datasets for focal species predictors
 - Same reasons as above
- Remove predators as predictors
 - Gill net samples only taken in spring and fall
 - Influenced by FW inflows so would also have to be estimated
 - Removal has very little effect on model results
- Remove salinity as predictor
 - Would have to be estimated as a function of FW inflow

Blue crab (winter, spring, summer, fall)

	In Blue Crab t-1					In Disc	charge		Water Temperature			
	winter 0	spring 0	summer 0	fall 0	winter 0 -1 -2	spring 0 -1 -2	summer 0 -1 -2		winter 0 -1 -2	spring 0 -1 -2	summer 0 -1 -2	fall 0 -1 -2
Blue crab winter				√	///	√√√	///	√√√	///	√√√	///	√ √ √
Blue crab spring	✓				///	√√√	///	√√√	/ / /	√√√	///	√√√
Blue crab summer		✓			///	√ √ √	///	√ √ √	///	√√√	///	/ / /
Blue crab fall			✓		///	///	///	///	///	///	///	✓ ✓ ✓

Blue crab (winter, spring, summer, fall)

Use BIC to select best model

	In Blue Crab t-1					In Disc	charge		Water Temperature				
	winter 0	spring 0	summer 0	fall 0	winter 0 -1 -2	spring 0 -1 -2	summer 0 -1 -2		winter 0 -1 -2	spring 0 -1 -2	summer 0 -1 -2	fall 0 -1 -2	
Blue crab winter				\checkmark	√ √ √	√ √ √	√√√	√ √ √	√ √ √	√ √ √	√ √ 	√ √ √	
Blue crab spring	\checkmark				√ √ √	√√√	√ √ √	√√√	✓ ✓ ✓	√ √ √	√√√	√ √ √	
Blue crab summer		\checkmark			√√√	√√√	√√√	√√√	√ √ √	√√√	√√√	√ √ √	
Blue crab fall			✓		√ √ √	√ √ √	√√√	√ √ √	√ √ √	√ √ √	√√√	√ √ √	

Blue crab (winter, spring, summer, fall)

- Use BIC to select best model
- Largest coefficients seen in winter model
 - High density dependence on preceding fall abundance
 - Positive effect of last winter's river discharge
 - Strong negative effect of summer temperature at 2 year lag

	In Blue Crab t-1					In Disc	charge		Water Temperature			
	winter 0	spring 0	summer 0	fall 0	winter 0 -1 -2	spring 0 -1 -2	summer 0 -1 -2	fall 0 -1 -2	winter 0 -1 -2	spring 0 -1 -2	summer 0 -1 -2	
Blue crab winter				\bigcirc		√ √ √	√√√	√ √ √	√ √ √	√√√	√ √ √	√√√
Blue crab spring	\checkmark				√ √ √	√ √ √	√ √ √	√ √ √	√ √ √	√√√	√√√	√ √ √
Blue crab summer		\checkmark			√ √ √	√√√	√√√	√ √ √	√ √ √	√√√	√√√	√√√
Blue crab fall			√		√ √ √	√ √ √	√√√	√ √ √	√ √ √	√√√	√√√	√ √ √

Blue crab: original vs. predicted abundance trends

Blue crab: original vs. predicted abundance trends

Effects of temperature on long-term trends (discharge set to seasonal means)

Blue crab: original vs. predicted abundance trends

Effects of discharge on long-term trends (temperature set to seasonal means)

Blue crab: seasonal and overall abundance changes

Decrease temperature 1°C each season

Blue crab: seasonal and overall abundance changes

Increase discharge 300% each season

White shrimp (winter, spring, summer, fall)

	In White shrimp t-1					In Disc	charge		Water Temperature			
	winter 0	spring 0	summer 0	fall 0	winter 0 -1	spring 0 -1	summer 0 -1	fall 0 -1	winter 0 -1	spring 0 -1	summer 0 -1	fall 0 -1
White shrimp winter				√	√ √	√ √	√ √	✓ ✓	√ √	√ √	√ √	✓ ✓
White shrimp spring	✓				✓ ✓	✓ ✓	√ √	✓ ✓	√ √	√ ✓	√ √	✓ ✓
White shrimp summer		✓			✓ ✓	✓ ✓	√ √	✓ ✓	√ √	√ ✓	√ √	✓ ✓
White shrimp fall			✓		✓ ✓	✓ ✓	√ √	✓ ✓	√ √	✓ ✓	√ √	✓ ✓

White shrimp (winter, spring, summer, fall)

Use BIC to select best model

	In White shrimp t-1					In Disc	charge		Water Temperature			
	winter 0	spring 0	summer 0	fall 0	winter 0 -1	spring 0 -1	summer 0 -1	fall 0 -1	winter 0 -1	spring 0 -1	summer 0 -1	fall 0 -1
White shrimp winter				\checkmark	✓ ✓	√ √	√ √	✓ ✓	√ √	√ ✓	√ √	✓ ✓
White shrimp spring	\checkmark				✓ ✓	√ √	√ √	✓ ✓	√ √	✓ ✓	✓ ✓	✓ ✓
White shrimp summer		\checkmark			✓ ✓	√ √	✓ ✓	\checkmark \checkmark	√ √	✓ ✓	√ √	✓ ✓
White shrimp fall			√		√ √	√ √	√ √	√ √	√ √	√ √	✓ ✓	✓ ✓

White shrimp (winter, spring, summer, fall)

- Use BIC to select best model
- Largest coefficients
 - High winter density dependence on preceding fall abundance
 - Negative effect of preceding year's winter discharge on summer abundance
 - Positive lag-0 effect of river discharge on summer abundance
 - Negative effect of preceding summer's temperature on fall abundance

	In White shrimp t-1					In Disc	charge		Water Temperature			
	winter 0	spring 0	summer 0	fall 0	winter 0 -1	spring 0 -1	summer 0 -1	fall 0 -1	winter 0 -1	spring 0 -1	summer 0 -1	fall 0 -1
White shrimp winter				\checkmark	√ ✓	√ √	√ √	✓ ✓	√ √	√ ✓	√ √	√ √
White shrimp spring	\checkmark				✓ ✓	√ √	√ √	✓ ✓	√ √	√ √	✓ ✓	√ √
White shrimp summer		\checkmark			V (V)	√ ✓		\checkmark \checkmark	√ √	√ √	√ √	✓ ✓
White shrimp fall			√		√ √	√ √	√ √	✓ ✓	√ √	√ √		✓ ✓

White shrimp: original vs. predicted abundance trends

White shrimp: original vs. predicted abundance trends

Effects of temperature on long-term trends (discharge set to seasonal means)

White shrimp: original vs. predicted abundance trends

Effects of discharge on long-term trends (temperature set to seasonal means)

White shrimp: seasonal and overall abundance changes

Decrease temperature 1°C each season

White shrimp: seasonal and overall abundance changes

Increase discharge 100% each season

Summary

- Original model structure from phase 1 needed to be altered to accommodate multiple seasons of each variable in the analysis
- Predictor variables affected by FW inflows were omitted to avoid using estimated values to predict focal species abundances
- Model results:
 - Temperature
 - High summer temperatures negatively affect both blue crab and white shrimp abundances
 - Freshwater inflows
 - Large increases in winter river discharge are needed to see positive impacts on blue crab abundance
 - Summer river discharge positively affects white shrimp abundances

scheef@utexas.edu